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Abstract. The complexity and heterogeneity of human water use over large spatial areas and decadal timescales can impede

the understanding of hydrologic change, particularly in regions with sparse monitoring of the water cycle. In the Arkavathy

watershed in south India, surface water inflows to major reservoirs decreased over a 40 year period during which urbanization,

groundwater depletion, modification of the river network, and changes in agricultural practices also occurred. These multiple,

co-varying drivers along with limited hydrological monitoring make attribution of the causes of water scarcity in the basin5

challenging, and limit the effectiveness of policy responses. We develop a novel, spatially distributed dataset to understand

hydrologic change by characterizing trends in surface water area in nearly 1700 rainwater harvesting and irrigation structures

known as tanks. Using an automated classification approach with subpixel unmixing, we classified water surface area in tanks

in Landsat images from 1973 to 2010. The classification results compared well with a reference dataset of water surface area

of tanks (R2 = 0.95). We modeled water surface area of 42 clusters of tanks in a multiple regression on simple hydrological10

covariates and time, and found distinguishable trends in water surface area in different regions of the watershed. Agricultural

areas with considerable groundwater irrigation exhibited the strongest drying. Urban land use was associated with intra-urban

drying, likely due to tank encroachment, and downstream periurban wetting, likely due to increased urban effluents. Disaggre-

gating the watershed-scale hydrological response via remote sensing of surface water bodies over multiple decades yielded a

spatially resolved characterization of hydrological change in an otherwise poorly monitored watershed. This approach presents15

an opportunity for understanding hydrological change in heavily managed watersheds where surface water bodies integrate

upstream runoff and can be delineated using satellite imagery.

1 Introduction

Human water consumption is straining water resources worldwide (Vogel et al., 2015; Gleick, 2014; Wada et al., 2012; Lall

et al., 2008), with developing nations particularly vulnerable to water scarcity (Vörösmarty et al., 2010). The causes of water20

scarcity are complex (Srinivasan et al., 2012) and in south India have been associated with urbanization (Srinivasan et al., 2013),

groundwater depletion (Reddy, 2005), degradation of rainwater harvesting structures (Gunnell and Krishnamurthy, 2003), and

interstate water disputes (Anand, 2004). Effective management of water scarcity in this region is impeded by lack of adequate
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data to quantify and understand how human activities affect hydrology (Batchelor et al., 2003; Lele et al., 2013; Srinivasan

et al., 2014).

Data scarcity is a common challenge in hydrology and has been extensively explored through the lens of “predictions

in ungauged basins” (PUB) over the past two decades (Bonell et al., 2006; Hrachowitz et al., 2013). The methodologies

developed through the PUB initiative focused strongly on near-“natural” basins, where proxies for flow behavior (whether5

climatic, geographic or geomorphic) could be used to form a space in which to extrapolate flows observed in gauged basins

to those in the ungauged site (Blöschl, 2013). Extending these techniques to heavily managed catchments presents numerous

challenges, including the identification of suitable proxies to define the effects of human intervention and non-stationarity of

the water cycle (Thompson et al., 2013). Given the complexity of these managed systems, hydrological reconstruction can help

identify the predominant processes that relate human water use and management with the hydrological response.10

In south India, the presence of widely distributed surface rainwater harvesting structures known as tanks (Van Meter et al.,

2014) creates an opportunity to employ remote sensing to enable such a reconstruction. The tanks are large enough to be

detected from satellite images, and their direct connection to surface flow in the channel network means that they can be

used as a proxy for surface flow generation. Because tanks integrate surface flow over the upstream catchment area, in situ

measurements of tank water storage have been successfully used to calibrate and validate hydrological models in Andhra15

Pradesh (Perrin et al., 2012) and Tamil Nadu (Van Meter et al., 2016). Other studies in south India (Mialhe et al., 2008), the

USA (Halabisky et al., 2016), Africa (Meigh, 1995; Liebe et al., 2005; Sawunyama et al., 2006; Liebe et al., 2009; Gardelle

et al., 2010) and South America (Rodrigues et al., 2012) have used surface water bodies as aggregators of streamflow and

indicators of hydrological change.

We employ remote sensing of tanks to reconstruct the history of hydrological change over four decades in the Arkavathy20

watershed near Bangalore, India, where the landscape has been intensively modified by humans for centuries. Concern about

water scarcity in the Arkavathy watershed has grown with the loss of historical monsoon-season flow and reduced inflows to the

the TG Halli reservoir, which was the primary water supply reservoir for Bangalore between the 1930s and 1970s. These inflows

have declined by nearly 80% since the late 1970s, a time period that also included groundwater depletion and loss of surface

storage in tanks despite stationary precipitation (Srinivasan et al., 2015). Understanding of the change in water resources within25

the watershed is largely limited to local stakeholders (Lele et al., 2013) as records of streamflow are insufficient to describe the

scope and heterogeity of hydrological change in the watershed.

Agriculture in south India was historically sustained by a series of reservoirs known collectively as the “cascading irrigation

tank system”, and nearly 1700 tanks have been constructed in the Arkavathy watershed. Tanks typically consist of a long,

shallow dam bund constructed across a river to harvest surface runoff during the monsoon and supply irrigation water during the30

dry season. The bund impedes streamflow until the tank fills, overflows, and “cascades” into downstream tanks. Although the

dam bunds remain in place, village-level water managers report that the tanks rarely fill up and overflow in large portions of the

Arkavathy (ATREE et al., 2015), similar to other watersheds in south India (Janakarajan, 1993b; Gunnell and Krishnamurthy,

2003; Kumar et al., 2016).
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Groundwater irrigation grew in popularity in India in the 1960s (Briscoe and Malik, 2006), supplanting tank irrigation in

south India in the following decades (Janakarajan, 1993a), and is now the dominant source of irrigation water in the Arkavathy

watershed. Increased water demand in the Arkavathy has been driven by a number of factors including intensification of

agriculture, replacement of traditional crops with Eucalyptus plantations, and population growth and urbanization around the

periphery of Bangalore, the road network, and other urban hubs. Additionally, thousands of in-stream check dams have been5

constructed in an attempt to augment groundwater recharge. These rapid changes occurring across 4000 km2 of watershed area

pose a challenge to understanding and managing emerging water scarcity issues.

Hydrological changes in the Arkavathy watershed should be apparent in historical satellite imagery, as the period of reported

hydrological change in the Arkavathy (from the late 1970s onwards) co-incides with the start of Landsat image collection by

Landsat satellites in 1972. We develop an automated approach for estimating surface water area in tanks in the Arkavathy10

watershed using Landsat imagery and apply this approach to reconstruct a timeseries of water extent in tanks from 1973 to

2010. We use this dataset to identify temporal trends in water extent, hypothesizing that such trends would be indicative of

long-term hydrological changes induced by human activity. We conclude by comparing the temporal trends of streamflow with

land use as a first attempt to identify competing influences of different land use practices on water resources throughout the

Arkavathy watershed.15

2 Methods

2.1 Study site

The Arkavathy watershed is located in the southeastern Indian state of Karnataka, west of the city of Bangalore (Fig. 1). It has

a monsoonal climate, with the rainy season lasting from June to November, relatively stable daily maximum temperature of

27◦C, and mean annual rainfall of 830 mm. Temperature peaks near the end of dry season in April around 34◦C before pre-20

monsoon rainfall arrives sporadically in April and May. The river is gauged at TG Halli reservoir and upstream of Harobele

reservoir (Fig. 1b).

The watershed contains a mix of urban, natural and agricultural land use. Agricultural land can be divided into rainfed grain

crops, irrigated vegetable crops, Eucalyptus plantations, and other irrigated tree plantations (e.g., areca nut). Most present-day

irrigation water in the Arkavathy is sourced from a deep, fractured rock aquifer. Irrigation from tanks is now significant in only25

a few locations, especially downstream of Bangalore, which imports water from the regional Cauvery river and returns some

urban wastewater to the Arkavathy. Although many tanks are no longer in use, the tank structures remain intact and continue

to capture surface water flows.

2.2 Remote-sensing images and supplementary data

Tracking water storage in the tanks at monthly or higher temporal resolution would be desirable, but is precluded because30

remotely sensed images from the monsoon season often contain large areas of cloud cover. This analysis therefore focuses
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on post monsoon images from the months of December and January. The highly seasonal monsoonal climate in south India

means that end-of-monsoon tank water storage can be attributed primarily to the magnitude of streamflow filling the tank

during monsoon season, allowing tank water storage to be used as a proxy for cumulative streamflow, minus any evaporation,

drainage or extraction losses. Although these losses do occur, they can be accounted for during subsequent trend analysis.

We selected 45 Landsat images, including 18 acceptable post-monsoon images from 1973 to 2010 for analyzing long-term5

hydrological trends (see Supplementary Material, Fig. S1 and Table S1 for dates). The 2014 Landsat imagery was used for

remote-sensing validation and dry-season analysis, but was not included in the 1973–2010 study period. Most images were

downloaded from Earth Explorer (earthexplorer.usgs.gov), except for images unavailable from USGS, which were purchased

from the National Remote Sensing Centre (NRSC, nrsc.gov.in). An image from the Land Imagery Scan Sensor (LISS-IV)

were also purchased from NRSC and used for accuracy assessment. A shapefile of tank boundaries was obtained from the10

Karnataka State Remote Sensing Application Centre (KSRSAC) to aid in classification of water bodies. Other supplementary

datasets were obtained from NASA Reverb (reverb.echo.nasa.gov) and Karnataka State Natural Disaster Monitoring Centre

(KSNDMC) as listed in Table 1.

Dataset Date Resolution Source

Landsat images 1973–2010 & 2014 30 m USGS & NRSC

LISS IV image 2014 5 m NRSC

Land use map 2001 - KSRSAC

Tank boundaries - - KSRSAC

Aster DEM - 30 m NASA Reverb

Daily Precipitation 1972–2010 0.69/100km2 KSNDMC
Table 1. Data sources.

NRSC images were manually georeferenced using reference points from the higher-resolution LISS image, with root mean

squared error (RMSE) less than 0.5 pixels in all images. All Landsat images were cropped to the extent of the Arkavathy15

watershed and converted to top-of-atmosphere (TOA) reflectance (Chander et al., 2009), which was used for training and

classification of all images. Landsat 7 ETM+ scenes acquired after May 31, 2003 contained gaps due to a failure of the Scan

Line Corrector (SLC) (Scaramuzza et al., 2005). Although gap-filling techniques for the SLC error generally use successive

images to fill missing pixels (e.g., Chen et al., 2011), we used a single-image gap-filling approach because of the inherent

temporal variability of tank water extent. We used pixels along the edge of the gap to fill missing pixels similar to Catts et al.20

(1985) but instead of interpolation, which would cause spectral homogenization in missing pixels, we repeated edge pixels

towards the center of the gaps using using successive grayscale dilation.

We used cloud-free images where possible, but in some years the only viable post-monsoon image contained some cloud

cover. Cloud shadows were particularly troublesome because the spectral reflectance of land in a cloud shadow was often

similar to that of water. We applied the fmask algorithm (Zhu and Woodcock, 2012) to identify clouds and cloud shadows,25

making minor modifications to improve the method for the Bangalore region as follows: (i) we included the filters from the
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automatic cloud cover assessment algorithm (ACCA, Irish, 2000) when determining the potential cloud pixels, which reduced

false positives for clouds in urban areas, and (ii) we removed clouds whose height (determined with fmask) was an outlier, which

was possible because the topography was relatively flat and the selected images contained only cumulus clouds which exhibit

relatively consistent base height at the lifting condensation level (Craven et al., 2002). Outliers were determined as clouds with

a height less than H25− 1.5(H75−H25) or greater than H75 + 1.5(H75−H25) where H25 and H75 are the first and third5

quartiles of cloud height and H75−H25 is the interquartile range. This procedure helped prevent erroneous classification of

cold, white land pixels as clouds and limited the potential for erroneous classification of water bodies as shadows.

2.3 Classification method

The tank water classification method relied on separating pixels containing water from pixels containing land in a spatial

region defined by the mapped tank boundaries. Water stored in tanks in the Arkavathy watershed varied from clear (with low10

reflectance in all Landsat reflectance bands) to turbid (more reflective in the visible (Moore, 1980) and NIR bands (Whitlock

et al., 1981)). Turbid water exhibited its highest reflectance in the red band due to the red soils in the Arkavathy watershed

(Novo et al., 1989) (see Figure 2).

Land cover surrounding wetted areas of tanks included vegetation, bare soil, and built-up urban land. We grouped these

classes into a single land class, which was characterized by high reflectance in the NIR band and lower reflectance in vis-15

ible bands (McFeeters, 1996). These characteristics primarily distinguish land from water in the Arkavathy, which has low

reflectance in the NIR band and either low reflectance in the green band (clear water) or high reflectance in the red band (turbid

water).

We developed an automated classification algorithm that distinguished areas of clear water and turbid water in each pixel

from land, allowing rapid and consistent classification approach across images and Landsat sensors. We used a two-stage20

approach for estimating water extent in tanks. First, pixels having definitive spectral properties of water were identified and

classified as “apparent” water pixels. Second, spectral unmixing was used to estimate the water fraction in all pixels within 60

m of any apparent water pixels. A conceptual representation of this algorithm is provided in Figure 3, and the steps described

below are cross referenced to the numbered panels in the figure.

The only user input to the classification algorithm for each scene was to select a reservoir containing clear water with which25

to train the image (Fig. 3, step 1). The Normalized Difference Water Index by McFeeters (1996), NDWI = (green - NIR) /

(green + NIR), reveals a clear distinction between land and water pixels. In each image, we divided pixels within the training

reservoir (or a rectangular window of pixels around the training reservoir if the reservoir was mostly full) into water or land

classes using Otsu’s method (Otsu, 1979), which clusters grayscale pixels into two classes by minimizing the within-class

variance. The water and land pixels at the training reservoir were used to calculate the spectral means of land pixels and clear30

water pixels (step 2). The minimum NDWI of water pixels at the training reservoir (step 3a) was used as a threshold to create a

mask of apparent clear water for the entire scene (step 3b) which was then dilated using a 5x5 square kernel (a 3x3 kernel for

MSS scenes). All pixels within the dilated mask were transformed to a single component, x̂, parallel to the transect between

the spectral means of clear water and land in the 2-dimensional space of NIR and green reflectance (step 3c). Pixels falling
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between the x̂ means of clear water and land were assigned a clear water fraction. Clear water fraction was set to 1 in pixels at

or below the clear water x̂ mean, and linearly decreased to 0 for pixels at or above the land x̂ mean.

A similar procedure of masking, dilating, and unmixing was performed for turbid water, with minor changes. The criteria

for apparent turbid water pixels were determined from land pixels near the training reservoir as the 98th percentile of red

reflectance and the 98th percentile of NDWI (step 4a), provided that red reflectance was greater than NIR reflectance. Pixels5

meeting these criteria were included in the turbid water mask and dilated to include the surrounding area (step 4b). Spectral

unmixing was conducted similarly to clear water, except the component for unmixing, ŷ, was taken along the transect between

the spectral means of turbid water and land in the NIR-red space (step 4c). Finally, the water area in each pixel was taken as

the higher value of clear water area and turbid water area (step 5). Tank water extent was calculated as the sum of water area

of all pixels within two pixels of the mapped tank boundary (step 6).10

We did not estimate the area of water in any tank that was flagged for the following quality concern criteria: (i) spatial

overlap or adjacency of dry tank boundary or wetted tank area with clouds or cloud shadows, (ii) spatial overlap of greater than

25% of dry or wet tank area with missing pixels due to the SLC error in Landsat 7 images, or (iii) greater than 25% spatial

overlap of dry or wet tank area with the edge of the scene from MSS images (step 7). In each of these cases, the tank area was

recorded as “NA”.15

Remote sensing and spatial processing were scripted in R (R Core Team, 2016) using the raster (Hijmans, 2015), rgeos

(Bivand and Rundel, 2016), sp (Pebesma and Bivand, 2005), and rgdal (Bivand et al., 2016) packages, as well as ggplot

(Wickham, 2009) for plotting. Watershed delineation and extraction of the cascading tank network were completed in GRASS

GIS (GRASS Development Team, 2016).

2.4 Validation of classification method20

To validate the classification results, we used a 5 m resolution LISS IV satellite image from 26 February 2014 to compare with

a classified Landsat image from 27 February 2014. The LISS IV image was classified in ENVI software (Harris Geospatial

Solutions Inc.) using support vector machine (SVM) classification with four land classes and four water classes. After classifi-

cation, the water classes were merged into a single water class and resampled to the resolution of Landsat so that the resulting

grayscale classification contained a water fraction in the range [0,1] for each pixel.25

We compared the Landsat results with the results from the reference (LISS) classification at the pixel scale and tank scale,

ignoring tanks in which there were obvious differences due to the incongruous image capture dates (e.g., cloud cover). At

the pixel level, a traditional confusion matrix is inappropriate for continuous classification data (Congalton and Green, 2009).

Thus, we evaluated the error (Landsat water fraction minus reference water fraction) in all pixels within tanks by binning the

pixel error into categories representing under-classified (-1 to -0.2), correct (-0.2 to 0.2) and over-classified (0.2 to 1). We30

further separated pixels into groups by binning the producer (reference) water fraction and user (Landsat) water fraction. We

calculated producer’s and user’s accuracy for each water fraction bin to form both a producer error matrix and consumer error

matrix (see Sect. 3.1).

6

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-562, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 14 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



2.5 Statistical model for long-term hydrological change

We used a statistical modeling approach to identify long-term trends in water extent in tanks that could not be explained by

readily available hydrological covariates (e.g., precipitation). We account for the effect of such explanatory variables in the

model and posit that the remaining temporal trend in surface water extent indicates long-term hydrological changes induced

by human activity. In the model, we exclude reservoirs, which are more likely to release water to users or downstream, and5

complicate the relationship between streamflow and reservoir water storage.

Because the timeseries for individual tanks were relatively short and contained many dry tanks, the dependent variable in

the model was a spatially aggregated measure of water area in all tanks within a “tank cluster”. We divided the watershed into

8 subwatersheds, which were further subdivided into hydrologically-connected tank clusters. Each cluster contained at least 15

tanks having non-zero water extent in at least 4 post-monsoon images. Tank clusters within each subwatershed were assumed10

to function as hydrologically similar units, with the only difference being the temporal trend in water extent over time.

Some tanks were constructed during the study period and were manually identified by examining the classification results of

the largest 10 tanks in each cluster and verified using topographical maps from the 1970s. For these “new” tanks, we removed

the tank (set the water extent to NA) in all scenes prior to the construction of the tank, unless there was a downstream tank

within the same cluster, in which case the original classification (no water) was retained.15

In an exploratory analysis we found that total surface water extent across the whole Arkavathy watershed was most strongly

related to precipitation metrics computed from September 1, the approximate onset of the northeast monsoon, to the date

of Landsat image acquisition. We anticipated that tank storage would respond to total seasonal precipitation, but also to the

quantity of precipitation delivered in large events, which are more prone to generating runoff. The model thus incorporated

total precipitation depth (Ptotal) and the average depth (Pextreme) of large storms (>10 mm/day) as explanatory variables.20

For each post-monsoon Landsat scene, we calculated these metrics at up to 62 rain gauges reporting daily rainfall, omitting

gauges in which the period of record excluded the monsoon year for the Landsat image. We spatially interpolated the rainfall

metrics throughout the entire watershed using the inverse distance squared method, and calculated the spatial average for each

tank cluster.

We exclusively used images that were taken early in the dry season (December or January), but we anticipated that there25

would be a relationship between the time that the image was taken and the wetted tank area, due to evaporative and drainage

losses of water from the tanks. We incorporated a linear loss term (L) using dry season days as a covariate in the model,

approximated as the number of days after December 1. To check the suitability of this assumption, we classified an additional

27 dry season Landsat images, and estimated the rate of decline of tank cluster water extent for each year with at least two dry

season images via linear regression. The nonparametric Mann–Kendall test was used to determine if there had been a change in30

dry season water losses over time, and showed that in only two subwatersheds, the Hesaraghatta and TG Halli, the trends were

significantly different from zero (i.e., the 95% bootstrap confidence intervals of the Mann–Kendall statistic excluded zero).

Presumably the trend in these two subwatersheds relates to the shift from tank irrigation to groundwater irrigation during the

study period.
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To understand the effects of carryover storage in tanks between years we developed a timeseries of tank water extent through-

out the dry season of 2014 (chosen largely for image availability through the dry season). We confirmed that at the start of

the 2014 monsoon, half of the tank clusters contained ≤ 25% of 2013 post-monsoon storage. More than 75% of tank clus-

ters contained ≤ 50% of 2013 post-monsoon storage. Tank clusters with the highest carryover storage were found in urban

subwatersheds or hilly sub watersheds at the southern part of the Arkavathy watershed.5

We used a multivariate regression with interactions between continuous covariates and categorical variables (e.g., see Jaccard

et al., 1990; Cohen et al., 2003) to estimate temporal trends in the different regions throughout the Arkavathy watershed. The

covariates total precipitation, extreme precipitation, and tank water loss were modeled as fixed effects which interact with

the subcatchments. In other words, the response of the stored water area to these variables was allowed to vary for each

subcatchment, but was assumed to be consistent for the tank clusters within the subcatchment. The model can be written as the10

following:

Aij = C0 + C1,kPtotal,ij + C2,kPextreme,ij + C3,kLi + B1,jY eari + eij (1)

The subscripts refer to the Landsat scene (i), tank clusters (j), and subcatchments (k). Other than the intercept (C0), the fixed

effects differ for each subcatchment (C1,k, C2,k, and C3,k) or tank cluster (B1,j). The errors for each observation are included

as eij . The dependent variable (Aij) is the normalized cluster area, where the cluster water extent of the scene is divided by the15

total maximum water extent of all tanks that were not removed from the scene. As a quality control measure, this area was set

to NA for a given cluster and scene if more than 30% of the total tank area in the cluster was removed, either in classification

(due to clouds or missing Landsat pixels) or in the assessment of tanks constructed during the study period. All covariates were

centered before input into the model. The primary result of interest is the value of the time trend for each cluster, B1,j , which

we use to infer hydrological change throughout the watershed.20

3 Results

3.1 Accuracy assessment

The Landsat classification performed best for pixels that were fully dry or wet, when compared with the reference (LISS)

classification in producer and consumer error matrices (Figure 4a). Producer accuracy was 84% for wet pixels and 99% for

dry pixels, and because of the high number of dry pixels the overall accuracy was 98%. Pixels containing a mix of water and25

land (20–80% water) had lower producer accuracy (41–82%). Because these pixels lie at the boundary of the wetted tank area,

classification error would be sensitive to geo-registration error in one or both of the images. Error could also arise from our

specification that water pixels must lie within 60 m of clearly identifiable water bodies, or the assumptions made during spectral

unmixing. Although the classification scheme accounted for only two classes, the spectral properties of the land class varied

among dry soil, wet soil, sparse vegetation, and irrigated agriculture. Classification of water was complicated by vegetation in30

tanks, varying degrees of turbidity, and algae blooms in tanks with considerable wastewater inflow. Overall, the classification
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errors were unbiased and the histogram of classification errors (excluding pixels with zero error) was approximately normally

distributed (Figure 4b).

The Landsat classification agreed well with the reference classification at the tank scale, and accuracy improved with in-

creasing tank size. A regression of Landsat extent versus reference extent (Figure 5) for tanks less than 25 hectares (27.8 pixels)

had a slope of 0.98 and coefficient of determination (R2) of 0.95. When all tanks and reservoirs were included, the regression5

line had a slope of 1.02 and coefficient of determination of 0.99. Over 99% of dry tanks were correctly classified as dry, but

error was considerably large for small tanks with non-zero water extent less than 2.5 ha (2.8 pixels), due to false positives

in the reference classification as well as errors the Landsat classification. For tanks between 2.5 and 10 ha the classification

performed considerably better. The mean absolute error increased as the extent of the water body increased, but mean percent

error decreased with water body size.10

Although the time-trends in most tanks have not been reported as ground data, trends in water storage over time are widely

known for some of the major reservoirs. We confirmed that the remote sensing analysis qualitatively reproduced trends for

these reservoirs (Figure 6). The TG Halli and Hesaraghatta reservoirs declined from a peak storage in the 1970s to much lower

contemporary storage. Large increases in water extent were observed in Manchanabele reservoir, which was constructed in

1993, and Harobele reservoir which was constructed in 2004. We excluded Byramangala reservoir, which receives wastewater15

effluent from Bangalore and where the observed water extent was not reliable because it was strongly influenced by the size of

algae blooms.

3.2 Long-term trends in surface water

The multivariate analysis yielded negative and positive values of B1,j (Table S2) revealing drying and wetting in different

parts of the Arkavathy watershed, with statistically significant trends in 13 tank clusters (Figure 7). In the three subwatersheds20

upstream of TG Halli reservoir, most tank clusters showed a drying trend. Tanks within Bangalore generally exhibited drying

trends, and tanks at the city periphery and immediately downstream were wetting. Other regions of the watershed exhibited

mixed results in the percent change in water extent, but none of the trends were statistically significant.

The model explained nearly 70% of the variation in tank cluster water extent (R2=0.68). The effects (slopes) of both precip-

itation covariates were significant (the 95% confidence interval of the slope of the temporal trend excluded zero) in nearly all25

subwatersheds, and the effect of dry-season water loss was significant in the two northernmost subwatersheds.

4 Discussion

4.1 Long-term hydrological changes

Our analysis confirms that tank water extent at the end of the monsoon season can be primarily attributed to the storage of

monsoon season streamflow. Because tanks in the Arkavathy watershed rarely overflow today and there is little carry-over30

storage year to year, the volume of water in tanks provides an integrated measure of hydrological processes from the previous
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wet season. The spatial scales of tank clusters are comparable with that of land use, and we can make associations between the

observed hydrological change and human drivers of change.

We hypothesized that the divergent trends in stored water extent through space could be attributed (at least in part) to

differences in the dominant land uses in the tank catchments. All the tank clusters with a large decreasing trend contain a

high percentage of agriculture (Figure 8). Mann–Kendall analysis confirms that an increase in agricultural land use fraction is5

significantly related to a decrease in tank water storage over time across the tank clusters. Conversely, increasing the proportion

natural lands increased the tank water storage over time, and the relationship between urban land use and tank water trends

was indiscriminate.

These associations offer insights into the potential drivers of hydrological change. Agricultural regions in the northern part

of the watershed are associated with heavy groundwater use, expansion of plantation agriculture, and watershed development10

programs intended to increase groundwater recharge (Srinivasan et al., 2015). These trends in land use and water management

are consistent with reductions in runoff generation due to depleted subsurface stores, and reductions in channel flow due to

network fragmentation by check dams and rainwater harvesting landscape features such as field bunds.

The changes within and downstream of urban areas are likely to be mixed, consistent with our failure to find a meaningful

relationship between changing tank water extent and urban areas. Tanks may be encroached upon as residential areas expand15

and additional wastewater can lead to expansion of algae blooms covering the water surface, both of which can appear as

"drying" of the tank. Urbanization can also have a "wetting" effect on tanks, due to increases in impervious surfaces or even the

fallowing of agricultural land in anticipation of urbanization. There is also a non-local effect in that increased urban water use

produces increased urban effluent, which is discharged to the surface channel network and may contribute to increases in tank

water storage downstream. For instance, increased wastewater from Bangalore has led to additional inflows to Byramangala20

reservoir and more irrigated agriculture directly downstream.

The observed increases in surface water storage in areas with more natural land cover in the southern part of the watershed

were unexpected, and we make two initial observations. First, the temporal trend was not significant in any of the individual

tank clusters, and the association between natural land and hydrological change may not be as strong as those associated with

agriculture and upstream urbanization. Second, a number of tanks were constructed in this region during the study period,25

indicating that there were previously unused water resources that were then captured. Given that we observe changes in water

infrastructure, there may have been important dynamics associated with land use change that we miss by focusing on land use

from a single date.

4.2 Assessing the classification and model uncertainty

The classification of small tanks in the Arkavathy watershed poses challenges associated with harmonization of different30

Landsat sensors and the variability in the spectral properties of “wet” tanks due to variations in water quality and vegetation

extent. Given these requirements, the automated algorithm performs well. The classification tends to overestimate the amount

of water in dry pixels and underestimate the amount of water in wet and mixed pixels. Because our classification scheme is

10
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designed to avoid bias between images taken with different Landsat sensors, we likely sacrifice some precision with sensors

from Landsat missions 5–8.

Errors at the pixel and tank scales are likely unavoidable given the spectral heterogeneity of both land and water pixels. In

particular, tanks containing water of variable turbidity, excessive vegetation, or algae blooms are prone to classification errors.

Because pixel-scale errors are unbiased, accuracy at the tank scale improves as tank size increases. Error is further mitigated5

by grouping tanks into clusters in the statistical model. Alternative classification methods incorporating additional land cover

classes (e.g., Halabisky et al., 2016; Mialhe et al., 2008) could be used to further reduce classification error, but would require

additional methods development to automate classification and perform spectral unmixing consistently across Landsat sensors.

The uncertainty of the classification (R2=0.99 when all water bodies are included) is small compared with the uncertainty

of the statistical model (R2=0.68). Although the results of our statistical model imply a non-trivial amount of unexplained10

variation, Gardelle et al. (2010) reported similar performance (R2=0.78) for a model relating precipitation and water extent in a

single lake, and noted that the correlation was valid only for a nine-year subset of the five-decade study period. The sources of

uncertainty include the complex hydrological processes that relate precipitation, streamflow, and tank water storage, as well as

the nonlinear and heterogeneous relationship between water extent and water storage. The results of our analysis are reasonable

given the simplicity of the model and the complexity and heterogeneity of the watershed hydrological response.15

5 Conclusions

The Arkavathy watershed embodies many of the water security challenges confronting southern India. With data limitations

hampering the characterization of changing water supplies in the basin, remote sensing tools provide insights into the history

and spatial pattern of change in water availability. We were able to take advantage of a pre-existing "sensing network" provided

by the irrigation tank system throughout the Arkavathy watershed. The high number of tanks in this watershed allowed for a20

comparison of hydrological change with land use at spatial scales appropriate for a first-order analysis.

The analysis reveals that changes in surface water resources are not spatially homogeneous, but vary in their magnitude and

sign among different regions of the basin. These differences appear to be associated with differing patterns of land use across

the basin. Further investigation could explore the effects of changing land use over time and, for example, agricultural water

management practices on the watershed-scale outcomes.25

Surface networks of rainwater harvesting structures are employed in seasonal climates worldwide, whether in cascading tank

systems in southern India and Sri Lanka, or hillslope farm dams in Australia (Callow and Smettem, 2009; Roohi and Webb,

2012), North-East Brazil (Lima Neto et al., 2011; Malveira et al., 2012; de Araújo and Medeiros, 2013; de Toledo et al., 2014),

South Africa (Hughes and Mantel, 2010), the US Great Plains (Womack et al., 2012) and China (Xiankun, 2014; Xu et al.,

2013). Capitalizing on these networks as proxy indicators of rainfall and streamflow variation, as in the Arkavathy, could prove30

a valuable approach to circumventing problems of data scarcity and characterizing changing hydrological conditions.
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Figure 1. Site map. (a) Location of the Arkavathy watershed within the state of Karnataka, India, and scene boundaries for Landsat 1–

3 (WRS-1) and Landsat 4–8 (WRS-2). (b) Map of the watershed including tanks, reservoirs, river network, and municipal boundary of

Bangalore. Lower-order streams and a number of small, generally dry tanks are excluded.
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Figure 2. Aerial photos of a small tank containing turbid water in the Arkavathy watershed before and after runoff events in August 2014.

The tank receives water from the channel and directly from adjacent agricultural plots, and water extent increases with storage.
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Figure 3. Flowchart of classification method. In Steps 3 and 4, clear water fraction and turbid water fraction are each calculated for all pixels

in the image before they are combined into water fraction in Step 5. Color images are from Landsat, with red, green, and blue in the image

corresponding to NIR, Red, and Green bands from Landsat TM.
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Figure 4. (a) Pixel-level producer and consumer accuracy tables, given by percent of pixels within a given error bin. Pixels are grouped

into rows by the producer or consumer water fraction and then binned into columns by the error (Landsat - LISS water fraction). The center

column shows the percentage of pixels that were correctly classified, with error between -0.2 and 0.2. (b) Histogram of non-zero classification

errors (excluding pixels where the error was zero).
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(a)

(b) (c)

Figure 5. Comparison of Landsat and reference (LISS) classification from February 2014 images. (a) Water extent in tanks less than 25

ha. (b) Water extent in all tanks and reservoirs. (c) Error in the Landsat classification for tanks and reservoirs. Relative error decreases with

increasing tank size. Only three of the five reservoirs are included because the LISS image excluded the Harobele reservoir and there was

considerable change in an algae bloom in the Byramangala reservoir in the time between the acquisition of the LISS and Landsat images.
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Figure 6. Water extent in reservoirs with best fit trend lines. TG Halli and Hesaraghatta reservoirs decreased over time. Manchanabele

reservoir was constructed in 1993, and Harobele Reservoir was constructed in 2004.

23

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-562, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 14 November 2016
c© Author(s) 2016. CC-BY 3.0 License.



−10

0

10

Temporal trend
(%/decade)

Figure 7. Relative trends in cluster water extent, 1973–2010, given as a percent change per decade relative to the maximum extent of each

cluster. White space indicates subwatershed boundaries, and black lines indicate statistical significance of the cluster trend.
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Figure 8. (a) Map of absolute trends in cluster water extent and (b) Agricultural land use percentage versus absolute trend in water extent for

each cluster, with symbols corresponding to the subwatershed. Agriculture is associated with decreasing water extent.
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